Electrical and Electronic Engineering MEng
2025-26 entryYour study will cover theoretical and practical aspects across the range of electrical and electronic engineering. The core topics in this course include power systems, power electronics, digital electronics, circuits and devices, electrical machines and drives. In addition to the individual project in the third year you will work on a more research based group project in your fourth year.
Key details
- A Levels AAA
Other entry requirements - UCAS code H629
- 4 years / Full-time
- September start
- Accredited
- Find out the course fee
- Optional placement year
- Study abroad
Explore this course:
Course description
Why study this course?
By the Institution of Engineering and Technology (IET), and meets all the academic standards for Chartered Engineer (CEng) status.
As rated by The Guardian University Guide, The Times and Sunday Times Good University Guide 2024.
'Learning by doing' is the reason The Diamond was built. Dedicated to engineering, this industrial-scale pilot plant is where you’ll apply the theory you learn in lectures – consolidating your understanding alongside students from other disciplines, and beyond the bounds of the curriculum.
Our academics tackle major scientific and technological challenges that have a positive impact on the world, ranging from improving the flow of data via wireless communications, renewable energy production and storage, improved efficiency and accuracy of manufacturing and the electrification of transport. Their research, which has been rated as internationally excellent, is what informs the content of your course.
You have the option to either study abroad for a year or spend a year working in industry, gaining real-world experience and connections. Links with partners such as Siemens Gamesa and Rolls-Royce make 91Ö±²¥ the right choice if you want to do a placement year – and mean we have world-famous companies joining us on campus for employability fairs and networking sessions.
Become a specialist in the design of devices and systems that make modern life possible, with a masters degree in electrical and electronic engineering.
Learn to understand electrical and electronic devices that make the human world go round: from machines and power systems like wind turbines, devices such as lasers, microprocessors and computers, to communication systems like 5G mobile networks.
With a masters course, you’ll not only explore the theoretical and practical engineering of these devices – you’ll become an expert.
Practical experience is key to our teaching. As a first year you’ll take part in the faculty's Global Engineering Challenge to solve a real-world problem. In your second year, you’ll work on a week-long project devised by an industry partner called Engineering You’re Hired – and you’ll get the chance to work with an engineering company through the semester-long 91Ö±²¥ Industrial Project Scheme.
At the end of your second year you can specialise or continue to focus on general electrical and electronic engineering.
Final year modules focus on the application of scientific knowledge to industry. You’ll work in a multidisciplinary team on research, led by an academic but with industry input. This group project will enhance your employability by developing practical transferable skills like team working, decision making, problem solving and communication.
Because we focus on developing your employability, 97.3% of our students go on to graduate-level work or further study within 15 months of graduating (Graduate Outcomes Survey 2020/21).
Accredited by the Institution of Engineering and Technology on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.
Modules
UCAS code: H629
Years: 2022, 2023
Core modules:
- Digital System Engineering
-
This module introduces the basic principles underlying the design of electronic systems. The ideas are discussed mainly in the context of digital design which cannot be undertaken realistically without some level of system thinking and planning. Other areas of system design will be used to illustrate and reinforce the idea that system design ideas apply to many fields beside digital design. The module will also introduce some of the computer based tools used by system designers for simulation and verification.
20 credits - Electrical Circuits and Networks
-
This module introduces the basic principles underlying electric circuits. The idea of a circuit, and the concepts of voltage, current and power are introduced for both alternating and direct sources. The interaction between electrical circuits and magnetic circuits is discussed and the idea of mutual coupling and transformers is introduced. Formal analysis methods such as nodal, loop and superposition are introduced in the context of dc and ac circuits and the complex notation for ac quantities applied to the latter. The calculation of power in a range of contexts is discussed extensively.
20 credits - Electronic Devices and Circuits
-
This module introduces the physical principles that govern the properties and applications of the active and passive circuit components that comprise all electronic and electrical circuits. Issues affecting the practical behaviour of resistors, capacitors and especially diodes and transistors are discussed. The circuit environments in which diodes and transistors are used, and the models describing their internal behaviour and external interactions, are introduced. It is shown how transistors and diodes can be used in both switching circuits and amplifier circuits and the important concept of small signal modelling is introduced in the context of the latter.
20 credits - Mathematics (Electrical and Aerospace)
-
This module aims to reinforce students' previous knowledge and to develop new basic mathematical techniques needed to support the engineering subjects taken at Levels 1 and 2. It also provides a foundation for the Level 2 mathematics courses in the appropriate engineering department. The module is delivered via online lectures, reinforced with weekly interactive problem classes..
20 credits - General Skills
-
This is a general skills module which encompasses a range of professional development activities that will be useful throughout the remainder of your degree and career. These include practical skills in the laboratory, simulation skills for analysing circuits, communication skills and career development.
10 credits
You will learn to use the full range of industry standard laboratory equipment such as oscilloscopes, waveform generators and soldering workstations. A series of engaging exercises, both in the lab and using advanced simulation tools, are designed to build up your proficiency in practical engineering. You will use measurements to determine the mystery components in hidden boxes, practice soldering and fault-finding on printed circuit boards, and combine programming with circuits using microcontrollers to solve real world challenges. Many activities have short written tasks aligned to them, allowing focused practice at technical communications with rapid feedback from staff.
In the personal tutorials programme, you will work through personal development activities in small groups, such as effective CV writing and communication skills. You will receive regular feedback on your personal development through skills audits aligned to the 91Ö±²¥ Graduate Attributes. Some activities will be individual, such as researching your own employability strategy to get your dream engineering job, while others will be in teams, such as giving peer feedback on presentations and an exciting team-based robotics challenge.
The module culminates in an independent construction project that will require all of your skills together - past projects have included creating audio speaker circuits (handling digital input signals right through to audible sound outputs) and infra-red remote controls.
The combination of the two strands to the module will prepare you to work as a professional engineer throughout your degree programme and beyond. - Introduction to Energy
-
This module introduces the concepts of electricity and energy in the home. It is aimed at a wide audience and answers those questions that many people have about energy, electricity and renewables but don't know who or how to ask. The module will use only basic arithmetic maths - multiplication, division, addition and subtraction. Renewable energy sources such as solar PV panels, small wind turbines and heat pumps will be described. What savings can you really make? Petrol vs diesel cars, how does electric fit into the picture?
10 credits - Programming
-
This unit deals with practical programming. Students will study and practise programming in C andMatlab to provide underpinning skills for their development as engineers.
10 credits - System Design Analysis
-
This module gives you a hands-on appreciation of the design, manufacture and operation of electrical and electronic products. Delivery will consist of lectures and laboratory classes.There will be two types of laboratories: (a) Deconstruction (b) ConstructionIn (a) you will be guided through the deconstruction of defunct commonplace electrical products. You will discover how the products are made; how the various sub-components interact and the materials that have been used.In (b) you will build some simple electrical/electronic systems. This may include the use of simple circuit simulation tools and a take-home kit.The lectures will be used to facilitate the labs and will also include discussions of the issues associated with recycling and sustainability.
10 credits - Global Engineering Challenge Week
-
The Faculty-wide Global Engineering Challenge Week is a compulsory part of the first-year programme. The project has been designed to develop student academic, transferable and employability skills as well as widen their horizons as global citizens. Working in multi-disciplinary groups of 5-6, for a full week, all students in the Faculty choose from a number of projects arranged under a range of themes including Water, Waste Management, Energy and Digital with scenarios set in an overseas location facing economic challenge. Some projects are based on the Engineers Without Borders Engineering for people design challenge*.
*The EWB challenge provides students with the opportunity to learn about design, teamwork and communication through real, inspiring, sustainable and cross-cultural development projects identified by EWB with its community-based partner organisations.
Core modules:
- Electrical Energy and Conversion
-
An outline of the electrical supply infrastructure, including the plurality of electrical energy generation modalities currently in use, is followed by elementary ideas behind protection, safety and tariff structures. The characteristics of electrical machines are discussed together with the circuit strategies that can be used to control of machine performance. Circuits for more general high efficiency power management are also described. Circuits dealing with power will dissipate energy and that energy must be removed if overheating is to be avoided - elements of thermal management are discussed in the context of audio power amplifiers.
30 credits - Analogue and Digital Electronics
-
This module brings together the underlying physical principles of BJT, JFET and MOSFET devices to show how structural decisions in device design affect performance as a circuit element. Basic circuit topologies such as long - tailed pairs, Darlington transistors and current mirrors are described as a precursor to exploring the internal design of a typical op-amp. Common applications of op-amps are discussed. The relationship between device structure and performance in simple CMOS circuits is explored and applied to real digital circuit applications. Digital system design strategies are introduced with examples drawn from everyday embedded digital systems.
20 credits - Communication Electronics
-
This module introduces the basic structure of a communication system and examines the various circuits and signal engineering strategies that are necessary to make a system work. The fundamental building blocks of a communications system are introduced and analysed in terms of the critical design metrics. Following on from the system approach, a range of circuit components are introduced and analysed such as filters and oscillators. This approach will provide you with a range of levels of system and component understanding such that you can apply these to designs.
20 credits - Design Project
-
You will undertake an extended design project that will encompass modelling, design, implementation and test. The list of available projects may vary from year-to-year, but will always encompass a range of topics from different aspects of electronic and electrical engineering.
10 credits - Engineering Software Design
-
This module builds on the C programming learned in year 1 by exploring both the higher level issues of programming, modelling, and skills that an Electronic Engineer should possess. Three mini projects using C and MATLAB and drawn from across the department. The aim is to develop in you the habits of object orientation (e.g. modularity, data hiding, etc.) using C and MATLAB, both commonly used industry standard tools, and writing software for embedded systems.
10 credits - Industrial Project
-
This module combines a lecture series and an industrially inspired group project task under the SHIPS banner, SHIPS standing for SHeffield Industrial Projects Scheme. The group industrial project aims to allow you to develop skills in such areas as engineering problem solving, effective communication (both oral and written) and group project management; all by tackling a complex technical problem with difficult realistic constraints within a restricted timescale.
10 credits - Managing Engineering Projects and Teams
-
This module provides you with an understanding of the significance of projects as an instrument of business success in engineering organisations. You will learn a range of project management tools, techniques and methodologies throughout the project life cycle. You will develop skills in defining, planning, delivering, and controlling engineering projects. You will also learn the roles and responsibilities of people within engineering projects and understand how to manage teams in engineering projects.
10 credits - Mathematics II (Electrical)
-
This module is part of a series of Level Two modules designed for the particular group of engineers shown in brackets in the module title. Each module consolidates previous mathematical knowledge and develops new mathematical techniques relevant to the particular engineering discipline.
10 credits - Engineering - You're Hired
-
The Faculty-wide Engineering - You're Hired Week is a compulsory part of the second year programme, and the week has been designed to develop student academic, transferable and employability skills. Working in multi-disciplinary groups of about six, students will work in interdisciplinary teams on a real world problem over an intensive week-long project. The projects are based on problems provided by industrial partners, and students will come up with ideas to solve them and proposals for a project to develop these ideas further.
In the third year you will be able to continue with the more general Electrical and Electronic Engineering which is our most popular course or choose an area to specialise in from the list of streams below.
- Electrical and Electronic Engineering
- Electrical Engineering
- Electronic Engineering
- Electronic and Communications Engineering
- Semiconductor Photonics and Electronics
Explore the modules for each stream below.
Electrical and Electronic Engineering stream core modules:
- Individual Investigative Project
-
To provide a structured individual design project to enable you to carry out practical and/or theoretical work which underpins your academic studies and allows for the acquisition and demonstration of a wide range of practical skills applied to engineering designs.
40 credits - Feedback Systems Design
-
The module provides an introduction to the modelling, analysis and design of feedback control systems using classical control theory. The focus is linear time-invariant (LTI) systems in the continuous-time domain, although a brief introduction is also provided to digital controllers.
10 credits - Accounting and Law for Engineers
-
The module is designed to introduce engineering students to key areas of accounting and legal risk that engineers should be aware of in their working environment. The module will draw directly on practical issues of budgeting, assessing financial risks and making financial decisions in the context of engineering projects and/or product development. At the same time, the module will develop students' understanding of the legal aspects of entering into contracts for the development and delivery of engineering projects and products, and enhance their awareness of environmental regulation, liability for negligence, intellectual property rights and the importance of data protection. Through a series of parallel running lectures in the two disciplines, the module will provide a working knowledge of the two areas and how they impinge on engineering practice.
10 credits - Mathematics III (Electrical)
-
This module consolidates previous mathematical knowledge and develops new mathematical techniques relevant to electrical engineering at levels 3 and 4.
10 credits - Power Electronics
-
To introduce and develop an understanding of power electronic devices and circuits; to develop circuit analysis techniques, circuit understanding and design capabilities for use in ac and dc power converters.
10 credits
Electrical and Electronic Engineering stream optional modules
- Digital Engineering
-
This module provides an introduction to digital processor organisation, architecture, instruction set architectures and system organisation/design. It also provides elements on the underlying computer arithmetic and approaches to design (including Verilog Hardware Description Language). The module is underpinned by practical examples. The module then considers an important application area, looking at the fundamental concepts, underlying mathematics, design methodologies and techniques.
20 credits - Electronics and Devices
-
This module aims to describe the generic circuit elements, analogue and digital and their associated properties which are typically used within IC circuits. Additionally, this module aims to bring you a level of understanding of VLSI design, such that you can design basic circuits.
20 credits
Having considered integrated electronics at a circuit level, this module will then look at the fundamental properties of semiconductor materials and devices. It will introduce properties of semiconductor materials such as Si, GaAs and GaN. The semiconductor material properties will be used to design a range of devices including solar cell, photodetector, LEDs, Lasers and microwave devices. Heterojunctions and nanostructures (such as quantum wells) will be introduced to improve semiconductor device performance. The module also aims to provide the knowledge to exploit semiconductor properties, material selection and approaches in device designs. - Power Engineering
-
This module will consider the design and performance of large power systems supply network. The module wil concentrate on models and techniques used to analyse the behaviour of such systems and the specification of major equipment used in such systems. The module will then build on this to consider the stability and fault analysis of such systems, identifying basic techniques for protection.
20 credits - Electromagnetic Fields and Devices
-
This module will introduce students static electric and magnetic fields, Maxwell's equations and the application of these equations to electro- and magento-static field problems. This will be extended to consider low frequency time-varying fields and the magnetic field calculations necessary to analyse rotating electrical machines. There will also be a consideration of the numerical methods used to solve magnetic field problems. These ideas will then underpin the second half of the module that will concentrate on the design of electrical machines, considering rating, windings and magnets.
20 credits
Electrical Engineering stream core modules:
- Individual Investigative Project
-
To provide a structured individual design project to enable you to carry out practical and/or theoretical work which underpins your academic studies and allows for the acquisition and demonstration of a wide range of practical skills applied to engineering designs.
40 credits - Feedback Systems Design
-
The module provides an introduction to the modelling, analysis and design of feedback control systems using classical control theory. The focus is linear time-invariant (LTI) systems in the continuous-time domain, although a brief introduction is also provided to digital controllers.
10 credits - Accounting and Law for Engineers
-
The module is designed to introduce engineering students to key areas of accounting and legal risk that engineers should be aware of in their working environment. The module will draw directly on practical issues of budgeting, assessing financial risks and making financial decisions in the context of engineering projects and/or product development. At the same time, the module will develop students' understanding of the legal aspects of entering into contracts for the development and delivery of engineering projects and products, and enhance their awareness of environmental regulation, liability for negligence, intellectual property rights and the importance of data protection. Through a series of parallel running lectures in the two disciplines, the module will provide a working knowledge of the two areas and how they impinge on engineering practice.
10 credits - Mathematics III (Electrical)
-
This module consolidates previous mathematical knowledge and develops new mathematical techniques relevant to electrical engineering at levels 3 and 4.
10 credits - Power Electronics
-
To introduce and develop an understanding of power electronic devices and circuits; to develop circuit analysis techniques, circuit understanding and design capabilities for use in ac and dc power converters.
10 credits - Power Engineering
-
This module will consider the design and performance of large power systems supply network. The module wil concentrate on models and techniques used to analyse the behaviour of such systems and the specification of major equipment used in such systems. The module will then build on this to consider the stability and fault analysis of such systems, identifying basic techniques for protection.
20 credits - Electromagnetic Fields and Devices
-
This module will introduce students static electric and magnetic fields, Maxwell's equations and the application of these equations to electro- and magento-static field problems. This will be extended to consider low frequency time-varying fields and the magnetic field calculations necessary to analyse rotating electrical machines. There will also be a consideration of the numerical methods used to solve magnetic field problems. These ideas will then underpin the second half of the module that will concentrate on the design of electrical machines, considering rating, windings and magnets.
20 credits
Electronic Engineering stream core modules:
- Individual Investigative Project
-
To provide a structured individual design project to enable you to carry out practical and/or theoretical work which underpins your academic studies and allows for the acquisition and demonstration of a wide range of practical skills applied to engineering designs.
40 credits - Feedback Systems Design
-
The module provides an introduction to the modelling, analysis and design of feedback control systems using classical control theory. The focus is linear time-invariant (LTI) systems in the continuous-time domain, although a brief introduction is also provided to digital controllers.
10 credits - Accounting and Law for Engineers
-
The module is designed to introduce engineering students to key areas of accounting and legal risk that engineers should be aware of in their working environment. The module will draw directly on practical issues of budgeting, assessing financial risks and making financial decisions in the context of engineering projects and/or product development. At the same time, the module will develop students' understanding of the legal aspects of entering into contracts for the development and delivery of engineering projects and products, and enhance their awareness of environmental regulation, liability for negligence, intellectual property rights and the importance of data protection. Through a series of parallel running lectures in the two disciplines, the module will provide a working knowledge of the two areas and how they impinge on engineering practice.
10 credits - Mathematics III (Electrical)
-
This module consolidates previous mathematical knowledge and develops new mathematical techniques relevant to electrical engineering at levels 3 and 4.
10 credits - Power Electronics
-
To introduce and develop an understanding of power electronic devices and circuits; to develop circuit analysis techniques, circuit understanding and design capabilities for use in ac and dc power converters.
10 credits - Digital Engineering
-
This module provides an introduction to digital processor organisation, architecture, instruction set architectures and system organisation/design. It also provides elements on the underlying computer arithmetic and approaches to design (including Verilog Hardware Description Language). The module is underpinned by practical examples. The module then considers an important application area, looking at the fundamental concepts, underlying mathematics, design methodologies and techniques.
20 credits - Electronics and Devices
-
This module aims to describe the generic circuit elements, analogue and digital and their associated properties which are typically used within IC circuits. Additionally, this module aims to bring you a level of understanding of VLSI design, such that you can design basic circuits.
20 credits
Having considered integrated electronics at a circuit level, this module will then look at the fundamental properties of semiconductor materials and devices. It will introduce properties of semiconductor materials such as Si, GaAs and GaN. The semiconductor material properties will be used to design a range of devices including solar cell, photodetector, LEDs, Lasers and microwave devices. Heterojunctions and nanostructures (such as quantum wells) will be introduced to improve semiconductor device performance. The module also aims to provide the knowledge to exploit semiconductor properties, material selection and approaches in device designs.
Electronic and Communications Engineering stream core modules:
- Individual Investigative Project
-
To provide a structured individual design project to enable you to carry out practical and/or theoretical work which underpins your academic studies and allows for the acquisition and demonstration of a wide range of practical skills applied to engineering designs.
40 credits - Feedback Systems Design
-
The module provides an introduction to the modelling, analysis and design of feedback control systems using classical control theory. The focus is linear time-invariant (LTI) systems in the continuous-time domain, although a brief introduction is also provided to digital controllers.
10 credits - Accounting and Law for Engineers
-
The module is designed to introduce engineering students to key areas of accounting and legal risk that engineers should be aware of in their working environment. The module will draw directly on practical issues of budgeting, assessing financial risks and making financial decisions in the context of engineering projects and/or product development. At the same time, the module will develop students' understanding of the legal aspects of entering into contracts for the development and delivery of engineering projects and products, and enhance their awareness of environmental regulation, liability for negligence, intellectual property rights and the importance of data protection. Through a series of parallel running lectures in the two disciplines, the module will provide a working knowledge of the two areas and how they impinge on engineering practice.
10 credits - Mathematics III (Electrical)
-
This module consolidates previous mathematical knowledge and develops new mathematical techniques relevant to electrical engineering at levels 3 and 4.
10 credits - Engineering Electromagnetics
-
The module aims to develop understanding of the physical behaviour of electric and magnetic fields; to teach how to apply these ideas in electronic and electrical engineering and to develop skills in calculating fields in a variety of engineering applications.
10 credits - Digital Engineering
-
This module provides an introduction to digital processor organisation, architecture, instruction set architectures and system organisation/design. It also provides elements on the underlying computer arithmetic and approaches to design (including Verilog Hardware Description Language). The module is underpinned by practical examples. The module then considers an important application area, looking at the fundamental concepts, underlying mathematics, design methodologies and techniques.
20 credits - Electronics and Devices
-
This module aims to describe the generic circuit elements, analogue and digital and their associated properties which are typically used within IC circuits. Additionally, this module aims to bring you a level of understanding of VLSI design, such that you can design basic circuits.
20 credits
Having considered integrated electronics at a circuit level, this module will then look at the fundamental properties of semiconductor materials and devices. It will introduce properties of semiconductor materials such as Si, GaAs and GaN. The semiconductor material properties will be used to design a range of devices including solar cell, photodetector, LEDs, Lasers and microwave devices. Heterojunctions and nanostructures (such as quantum wells) will be introduced to improve semiconductor device performance. The module also aims to provide the knowledge to exploit semiconductor properties, material selection and approaches in device designs.
Semiconductor photonics and electronics stream core modules:
- Individual Investigative Project
-
To provide a structured individual design project to enable you to carry out practical and/or theoretical work which underpins your academic studies and allows for the acquisition and demonstration of a wide range of practical skills applied to engineering designs.
40 credits - Feedback Systems Design
-
The module provides an introduction to the modelling, analysis and design of feedback control systems using classical control theory. The focus is linear time-invariant (LTI) systems in the continuous-time domain, although a brief introduction is also provided to digital controllers.
10 credits - Accounting and Law for Engineers
-
The module is designed to introduce engineering students to key areas of accounting and legal risk that engineers should be aware of in their working environment. The module will draw directly on practical issues of budgeting, assessing financial risks and making financial decisions in the context of engineering projects and/or product development. At the same time, the module will develop students' understanding of the legal aspects of entering into contracts for the development and delivery of engineering projects and products, and enhance their awareness of environmental regulation, liability for negligence, intellectual property rights and the importance of data protection. Through a series of parallel running lectures in the two disciplines, the module will provide a working knowledge of the two areas and how they impinge on engineering practice.
10 credits - Mathematics III (Electrical)
-
This module consolidates previous mathematical knowledge and develops new mathematical techniques relevant to electrical engineering at levels 3 and 4.
10 credits - Power Electronics
-
To introduce and develop an understanding of power electronic devices and circuits; to develop circuit analysis techniques, circuit understanding and design capabilities for use in ac and dc power converters.
10 credits - Digital Engineering
-
This module provides an introduction to digital processor organisation, architecture, instruction set architectures and system organisation/design. It also provides elements on the underlying computer arithmetic and approaches to design (including Verilog Hardware Description Language). The module is underpinned by practical examples. The module then considers an important application area, looking at the fundamental concepts, underlying mathematics, design methodologies and techniques.
20 credits - Electronics and Devices
-
This module aims to describe the generic circuit elements, analogue and digital and their associated properties which are typically used within IC circuits. Additionally, this module aims to bring you a level of understanding of VLSI design, such that you can design basic circuits.
20 credits
Having considered integrated electronics at a circuit level, this module will then look at the fundamental properties of semiconductor materials and devices. It will introduce properties of semiconductor materials such as Si, GaAs and GaN. The semiconductor material properties will be used to design a range of devices including solar cell, photodetector, LEDs, Lasers and microwave devices. Heterojunctions and nanostructures (such as quantum wells) will be introduced to improve semiconductor device performance. The module also aims to provide the knowledge to exploit semiconductor properties, material selection and approaches in device designs.
In the fourth year you will continue to study modules related to the stream you chose for your third year.
Electrical and Electronic Engineering stream core modules:
- Group Project
-
The project, performed under the supervision of either two academic supervisors, or one academic supervisor and one second external marker from an industrial partner, takes the form of a multidisciplinary investigative or design project usually with a significant industrial input. Students are divided into multidisciplinary teams and presened with the project brief by the industrialists involved. Project activities are based in the research labs of the supervisor(s) although students may also have to make use of the facilities, normally within the Department. Students hold regular minuted progress management meetings with group members rotating their group management responsibilities.
45 credits
Electrical and Electronic Engineering stream optional modules:
- Managing Innovation and Change in Engineering Contexts
-
This module introduces you to the importance of innovation in manufacturing and service organisations whose primary business activity is engineering and/or technology. Innovation management is introduced as the thoughtful combination of new product/process development and change management. Through case studies, theoretical frameworks, and tools you will come to understand innovation at multiple scales: international, national, regional, organisational and team, with particular emphasis on how organisations manage and exploit the commercial risks and opportunities inherent in innovation, and how project teams and engineers can respond to innovation challenges effectively. The module is aimed at engineering students of any discipline.
15 credits - Engineering Commercial Success: And making the world a better place!
-
Students work in interdisciplinary teams to create solutions to a real problem provided by a real customer. Typically the customer will be a member or members of the community e.g. children with disabilities, terminally ill people, etc. Student teams learn how to solicit needs from user interviews and go on to create (and where possible prototype) solutions that meet functional, commercial and social requirements. Teams pitch their concept and business start up proposals to an invited audience and assessors.
15 credits - AC Machines
-
This unit will introduce students to AC, Synchronous, Induction, and Synchronous/Switched Reluctance machines. It will consider operation, performance, characteristics and modelling.
15 credits - Energy Storage Management
-
This module looks at the storage and management of energy in electrical systems. It will consider:
15 credits
(a) Fuel cells: the basic principles of hydrogen fuel cells, reaction
rate, cell interconnection, the bipolar plate, fuel cell types, ancillary components of a fuel cell system, advantages and disadvantages of fuel cell technologies.
(b) Batteries and supercapacitors: battery chemistries, energy/power densities of different batteries. Differences between electrochemical energy storage and electrical energy storage in supercapacitors, performance characteristics, charging, modelling, thermal effects, and measurement.
(c) Mechanical: Principles of mechanical energy storage, flywheels / compressed air. Mechanics of energy storage, precession torques and counter-rotating systems for vehicles. Energy management will include the ancillaries required to connect energy storage to the grid, including dc-dc and dc-ac inverters in addition to battery modelling approaches commonly used for state of charge and state of health monitoring. - Motion Control and Servo Drives
-
This module investigates, in detail, the performance and operational characteristic of both modern a.c. and d.c. variable speed drives and actuation systems, as well as their applications in electric/hybrid vehicle traction.
15 credits - Power Electronics Converters
-
This module introduces power conversion principles, defines the terminology and analyses operational principles, modulation methods and control of selected power converters topologies for industrial applications.
15 credits - Power Semiconductor Devices
-
This module will look at power semiconductor devices: physics, technology, characteristics, packaging and application.
15 credits - Advanced Integrated Electronics
-
This module will advance your understanding of analogue and digital VLSI design. It concentrates on issues such as power consumption, the effect of interconnect, non-CMOS logic, circuit layout, analog amplifiers, data converters, and using Spice.
15 credits - Nanoscale Electronic Devices
-
The course aims to provide students with an understanding of the science and technology which underpins modern electronic device technology, with an emphasis on integrated electronic devices at the nanoscale.
15 credits - Electronic Communication Technologies
-
This module aims to provide you with a range of skills that are required when designing circuits and systems at high frequencies. Topics covered will include: electromagnetic interference mechanisms, circuit design techniques, filtering, screening, transmission lines, S-parameters, Smith charts, equivalent circuits for passive and active devices, radio frequency (RF) amplifier design, noise performance and nonlinearities of RF circuits and systems.
15 credits
Electrical Engineering stream core modules:
- Group Project
-
The project, performed under the supervision of either two academic supervisors, or one academic supervisor and one second external marker from an industrial partner, takes the form of a multidisciplinary investigative or design project usually with a significant industrial input. Students are divided into multidisciplinary teams and presened with the project brief by the industrialists involved. Project activities are based in the research labs of the supervisor(s) although students may also have to make use of the facilities, normally within the Department. Students hold regular minuted progress management meetings with group members rotating their group management responsibilities.
45 credits
Electrical Engineering stream optional modules:
- Managing Innovation and Change in Engineering Contexts
-
This module introduces you to the importance of innovation in manufacturing and service organisations whose primary business activity is engineering and/or technology. Innovation management is introduced as the thoughtful combination of new product/process development and change management. Through case studies, theoretical frameworks, and tools you will come to understand innovation at multiple scales: international, national, regional, organisational and team, with particular emphasis on how organisations manage and exploit the commercial risks and opportunities inherent in innovation, and how project teams and engineers can respond to innovation challenges effectively. The module is aimed at engineering students of any discipline.
15 credits - Engineering Commercial Success: And making the world a better place!
-
Students work in interdisciplinary teams to create solutions to a real problem provided by a real customer. Typically the customer will be a member or members of the community e.g. children with disabilities, terminally ill people, etc. Student teams learn how to solicit needs from user interviews and go on to create (and where possible prototype) solutions that meet functional, commercial and social requirements. Teams pitch their concept and business start up proposals to an invited audience and assessors.
15 credits - AC Machines
-
This unit will introduce students to AC, Synchronous, Induction, and Synchronous/Switched Reluctance machines. It will consider operation, performance, characteristics and modelling.
15 credits - Advanced Control of Electric Drives
-
This module explores advanced modelling and modern control strategies of electric drive systems with a focus on induction (IM) and permanent magnet synchronous machines (PMSM).
15 credits - Energy Storage Management
-
This module looks at the storage and management of energy in electrical systems. It will consider:
15 credits
(a) Fuel cells: the basic principles of hydrogen fuel cells, reaction
rate, cell interconnection, the bipolar plate, fuel cell types, ancillary components of a fuel cell system, advantages and disadvantages of fuel cell technologies.
(b) Batteries and supercapacitors: battery chemistries, energy/power densities of different batteries. Differences between electrochemical energy storage and electrical energy storage in supercapacitors, performance characteristics, charging, modelling, thermal effects, and measurement.
(c) Mechanical: Principles of mechanical energy storage, flywheels / compressed air. Mechanics of energy storage, precession torques and counter-rotating systems for vehicles. Energy management will include the ancillaries required to connect energy storage to the grid, including dc-dc and dc-ac inverters in addition to battery modelling approaches commonly used for state of charge and state of health monitoring. - Motion Control and Servo Drives
-
This module investigates, in detail, the performance and operational characteristic of both modern a.c. and d.c. variable speed drives and actuation systems, as well as their applications in electric/hybrid vehicle traction.
15 credits - Permanent Magnet Machines and Actuators
-
This module looks at the topologies for, design of, and characteristics of permanent magnet electrical machines. It will look at these machines from the types of magnets employed, electromagnetic torque, thermal behaviour and modelling through the winding of such machines to the design of a range of machines; for example brushless AC/DC, fractional slot, switched/transverse flux.
15 credits - Power Electronics Converters
-
This module introduces power conversion principles, defines the terminology and analyses operational principles, modulation methods and control of selected power converters topologies for industrial applications.
15 credits - Power Semiconductor Devices
-
This module will look at power semiconductor devices: physics, technology, characteristics, packaging and application.
15 credits
Electronic Engineering stream core modules:
- Group Project
-
The project, performed under the supervision of either two academic supervisors, or one academic supervisor and one second external marker from an industrial partner, takes the form of a multidisciplinary investigative or design project usually with a significant industrial input. Students are divided into multidisciplinary teams and presened with the project brief by the industrialists involved. Project activities are based in the research labs of the supervisor(s) although students may also have to make use of the facilities, normally within the Department. Students hold regular minuted progress management meetings with group members rotating their group management responsibilities.
45 credits
Electronic Engineering stream optional modules:
- Managing Innovation and Change in Engineering Contexts
-
This module introduces you to the importance of innovation in manufacturing and service organisations whose primary business activity is engineering and/or technology. Innovation management is introduced as the thoughtful combination of new product/process development and change management. Through case studies, theoretical frameworks, and tools you will come to understand innovation at multiple scales: international, national, regional, organisational and team, with particular emphasis on how organisations manage and exploit the commercial risks and opportunities inherent in innovation, and how project teams and engineers can respond to innovation challenges effectively. The module is aimed at engineering students of any discipline.
15 credits - Engineering Commercial Success: And making the world a better place!
-
Students work in interdisciplinary teams to create solutions to a real problem provided by a real customer. Typically the customer will be a member or members of the community e.g. children with disabilities, terminally ill people, etc. Student teams learn how to solicit needs from user interviews and go on to create (and where possible prototype) solutions that meet functional, commercial and social requirements. Teams pitch their concept and business start up proposals to an invited audience and assessors.
15 credits - Advanced Computer Systems
-
This module looks at modern computer systems from operating systems down to the underlying computer architectures to provide a coherent view of how such systems work and how their performance can be improved, looking, in particular, at parallelism.
15 credits - Advanced Integrated Electronics
-
This module will advance your understanding of analogue and digital VLSI design. It concentrates on issues such as power consumption, the effect of interconnect, non-CMOS logic, circuit layout, analog amplifiers, data converters, and using Spice.
15 credits - Advanced Signal Processing
-
This module focuses on introducing advanced signal processing methods and technologies and their applications. Topics include multi-rate filtering and filter banks; signal transforms; random signals; adaptive filtering and array signal processing.
15 credits - Energy Efficient Semiconductor Devices
-
The efficient use of energy is of critical importance to future growth and well-being, providing a mechanism to reduce global emissions and to offset the impact of increasing fuel costs. Semiconductor devices can play can crucial role in this key global challenge, providing options which can both improve energy efficiency and also means for renewable energy generation. The course describes four key sectors where semiconductor devices are making considerable impact on energy efficiency.
15 credits - Nanoscale Electronic Devices
-
The course aims to provide students with an understanding of the science and technology which underpins modern electronic device technology, with an emphasis on integrated electronic devices at the nanoscale.
15 credits - Electronic Communication Technologies
-
This module aims to provide you with a range of skills that are required when designing circuits and systems at high frequencies. Topics covered will include: electromagnetic interference mechanisms, circuit design techniques, filtering, screening, transmission lines, S-parameters, Smith charts, equivalent circuits for passive and active devices, radio frequency (RF) amplifier design, noise performance and nonlinearities of RF circuits and systems.
15 credits - System Design
-
This module is concerned with the management of complexity in system design. To learn the basics of structured approach to design of complex systems, you will undertake a design project that requires the application of state of the art design tools that help to achieve appropriate error free design structures.
15 credits
Electronic and Communications Engineering stream core modules:
- Group Project
-
The project, performed under the supervision of either two academic supervisors, or one academic supervisor and one second external marker from an industrial partner, takes the form of a multidisciplinary investigative or design project usually with a significant industrial input. Students are divided into multidisciplinary teams and presened with the project brief by the industrialists involved. Project activities are based in the research labs of the supervisor(s) although students may also have to make use of the facilities, normally within the Department. Students hold regular minuted progress management meetings with group members rotating their group management responsibilities.
45 credits
Electronic and Communications Engineering stream optional modules:
- Managing Innovation and Change in Engineering Contexts
-
This module introduces you to the importance of innovation in manufacturing and service organisations whose primary business activity is engineering and/or technology. Innovation management is introduced as the thoughtful combination of new product/process development and change management. Through case studies, theoretical frameworks, and tools you will come to understand innovation at multiple scales: international, national, regional, organisational and team, with particular emphasis on how organisations manage and exploit the commercial risks and opportunities inherent in innovation, and how project teams and engineers can respond to innovation challenges effectively. The module is aimed at engineering students of any discipline.
15 credits - Engineering Commercial Success: And making the world a better place!
-
Students work in interdisciplinary teams to create solutions to a real problem provided by a real customer. Typically the customer will be a member or members of the community e.g. children with disabilities, terminally ill people, etc. Student teams learn how to solicit needs from user interviews and go on to create (and where possible prototype) solutions that meet functional, commercial and social requirements. Teams pitch their concept and business start up proposals to an invited audience and assessors.
15 credits - Advanced Signal Processing
-
This module focuses on introducing advanced signal processing methods and technologies and their applications. Topics include multi-rate filtering and filter banks; signal transforms; random signals; adaptive filtering and array signal processing.
15 credits - Electronic Communication Technologies
-
This module aims to provide you with a range of skills that are required when designing circuits and systems at high frequencies. Topics covered will include: electromagnetic interference mechanisms, circuit design techniques, filtering, screening, transmission lines, S-parameters, Smith charts, equivalent circuits for passive and active devices, radio frequency (RF) amplifier design, noise performance and nonlinearities of RF circuits and systems.
15 credits - Data Coding Techniques for Communication and Storage
-
Processing techniques to enable transmission and storage of data, in a reliable and secure fashion, are a key element in nearly all modern communication systems. This module deals with data-coding techniques required for reliable and secure data transmission and storage. It covers various aspects of digital communication combining elementary communication theory with practical solutions to problems encountered.
15 credits - Principles of Communications
-
This course considers the mathematical foundations and the derived theories and techniques used by a wide range of communication systems, particularly the more recent digital systems. The aim is to provide the very mathematical foundation for understanding modern communication systems, present the structure of modern communication systems and the basic issues at each stage in the system, and create a theoretical background that applies to all communication systems and is not affected by any particular technology.
15 credits - Antennas, Propagation and Satellite Systems
-
Review and application of electromagnetic theory for antenna analysis. Radiation pattern, gain, input impedance. Half wave, full wave dipole antennas, monopole antennas. Image theory. Antenna arrays. Polarization: linear, elliptical, axial ratio. Aperture theory: Fourier analysis, Huygens-Kirchhoff formula, rectangular and circular aperture, effective aperture. Microstrip antennas. Propagation in a plasma: critical frequency, refractive index. Ionospheric/tropospheric propagation of HF/VHF radio waves: MUF, ionosonde. Satellite communications systems. Earth stations - types and performance. Satellite transponders - amplifiers, redundancy, transmitters, frequency translation. Multiple access systems.Â
15 credits - Mobile Networks and Physical Layer Protocols
-
This module aims to provide an overview of how mobile communications networks operate and descriptions of the radio technology used over the air interface and the physical layer protocols used in GSM, 3G, 4G and 5G mobile networks. More specifically, the syllabus will cover: the description and demonstration of current UK cellular mobile networks with a historical perspective; antenna design for the radio-frequency interface, including handset, vehicle and base station antennas; multiple antenna arrays; health related issues of mobile handsets; radio propagation issues, diversity gain, Rake reception; link budgets; cellular network design and deployment strategies; modulation schemes; and GSM/3G/4G/5G physical layer protocols.
15 credits - Broadband Wireless Techniques
-
This module will give an understanding of the most up-to-date communication techniques used in the design and operation of broadband wireless systems based on OFDM technology such as WiFi, WiMAX and LTE. The module will explore the physical (PHY) layer, medium access control (MAC) and radio resource management functionalities of broadband wireless systems. It will also include an introduction to broadband wireless systems; the principles of OFDM, OFDMA and TDD/FDD multiple access; bit interleaved convolutional and turbo channel coding/decoding for OFDM systems; adaptive coding and modulation; frequency selective fading, channel estimation and equalisation; MIMO techniques; and network architectures.
15 credits - Wireless Packet Data Networks and Protocols
-
The aim of this module is to give an understanding of the functionality of packet switching protocols at different layers of a wireless system and to appreciate how these protocols achieve reliable data delivery in wireless communication systems. The module also includes an introduction to packet switching in wireless networks; radio link protocols, CRC, ARQ and hybrid-ARQ; MAC protocols; packet scheduling and differentiated quality of service; routing, IP protocol, mobile IP, wireless TCP and end-to-end quality of service; radio resource management, network planning and optimisation; network examples - WiFi, HSPA or LTE.
15 credits
Semiconductor Photonics and Electronics stream core modules:
- Group Project
-
The project, performed under the supervision of either two academic supervisors, or one academic supervisor and one second external marker from an industrial partner, takes the form of a multidisciplinary investigative or design project usually with a significant industrial input. Students are divided into multidisciplinary teams and presened with the project brief by the industrialists involved. Project activities are based in the research labs of the supervisor(s) although students may also have to make use of the facilities, normally within the Department. Students hold regular minuted progress management meetings with group members rotating their group management responsibilities.
45 credits
Semiconductor Photonics and Electronics stream optional modules:
- Managing Innovation and Change in Engineering Contexts
-
This module introduces you to the importance of innovation in manufacturing and service organisations whose primary business activity is engineering and/or technology. Innovation management is introduced as the thoughtful combination of new product/process development and change management. Through case studies, theoretical frameworks, and tools you will come to understand innovation at multiple scales: international, national, regional, organisational and team, with particular emphasis on how organisations manage and exploit the commercial risks and opportunities inherent in innovation, and how project teams and engineers can respond to innovation challenges effectively. The module is aimed at engineering students of any discipline.
15 credits - Engineering Commercial Success: And making the world a better place!
-
Students work in interdisciplinary teams to create solutions to a real problem provided by a real customer. Typically the customer will be a member or members of the community e.g. children with disabilities, terminally ill people, etc. Student teams learn how to solicit needs from user interviews and go on to create (and where possible prototype) solutions that meet functional, commercial and social requirements. Teams pitch their concept and business start up proposals to an invited audience and assessors.
15 credits - Power Semiconductor Devices
-
This module will look at power semiconductor devices: physics, technology, characteristics, packaging and application.
15 credits - Semiconductor Materials
-
This module describes the basic physical properties (structural, optical, electrical) of semiconductor materials used in the electronic and opto-electronic industries, and in semiconductor based research. The aim is to equip you with a comprehensive background understanding of the physical, structural, optical, electronic properties of semiconductor materials used in modern electronic and opto-electronic devices. There is a laboratory assignment where characterisation of epitaxially-grown material will be performed.
15 credits - Principles of Semiconductor Device Technology
-
The unit describes the basic structure of materials and their relationship to the requirements of semiconductor devices for future applications, leading to methods of crystal growth, fabrication, modelling and characterization. The focus is on devices that underpin CMOS and its future evolution in AI: starting with the MOSFET, and leading on to future devices such as TunnelFET, Negative Capacitance FET and the Resistive Random Access Memory (RERAM).
15 credits - Packaging and Reliability of Microsystems
-
The module describes the methods used to fabricate microsystems. It also introduces and develops an understanding of the reliability and failure mechanisms in the devices and resulting microsystems.
15 credits - Nanoscale Electronic Devices
-
The course aims to provide students with an understanding of the science and technology which underpins modern electronic device technology, with an emphasis on integrated electronic devices at the nanoscale.
15 credits - Energy Efficient Semiconductor Devices
-
The efficient use of energy is of critical importance to future growth and well-being, providing a mechanism to reduce global emissions and to offset the impact of increasing fuel costs. Semiconductor devices can play can crucial role in this key global challenge, providing options which can both improve energy efficiency and also means for renewable energy generation. The course describes four key sectors where semiconductor devices are making considerable impact on energy efficiency.
15 credits - Optical Communication Devices and Systems
-
The course examines the behaviour of the components in a communications system and the way in which their design and individual performance is determined by that of the system requirements.
15 credits
The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption.
Learning and assessment
Learning
Learning will be delivered through a combination of lectures, practical labs and tutorials as well as independent study that is supported by problem classes.
In your first and second year all your labs will be held in the Diamond where you will use industry grade equipment and have lab sessions in the dedicated teaching clean room.
In your third year you will carry out your own research project, supervised by an academic. In your final year, you will work as part of a multidisciplinary team on a research project led by an academic with industry input.
Our teaching is informed by the research that our department is involved with. This results in learning by a combination of theory and hands on practical lab sessions in our state of the art facilities with courses that are accredited by the Institute of Engineering and Technology (IET).
Assessment
You will be assessed using a mixture of exams/tests, coursework and practical sessions.
Programme specification
This tells you the aims and learning outcomes of this course and how these will be achieved and assessed.
Entry requirements
With Access 91Ö±²¥, you could qualify for additional consideration or an alternative offer - find out if you're eligible.
The A Level entry requirements for this course are:
AAA
including Maths and a science
- A Levels + a fourth Level 3 qualification
- AAB including Maths and a science + B in a relevant EPQ; AAB including Maths and a science + B in AS or A Level Further Maths
- International Baccalaureate
- 36 with 6 in Higher Level Maths and a science
- BTEC Extended Diploma
- DDD in Engineering + B in A Level Maths
- BTEC Diploma
- DD in Engineering + A in A Level Maths
- T Level
- Distinction in a relevant T Level, including grade A in the core component + B in A Level Maths
- Scottish Highers + 2 Advanced Highers
- AAABB + AA in Maths and a science
- Welsh Baccalaureate + 2 A Levels
- A + AA in Maths and a science
- Access to HE Diploma
- Award of Access to HE Diploma in a relevant subject, with 45 credits at Level 3, including 39 at Distinction (to include Maths and Physics units), and 6 at Merit + Grade B in A Level Maths (or equivalent)
-
Relevant T Level subjects include: Maintenance, Installation & Repair for Engineering & Manufacturing; Building Services Engineering for Construction; or Design & Development for Engineering & Manufacturing
-
Science subjects include Biology, Chemistry, Computer Science, Electronics, Physics or Further Mathematics
The A Level entry requirements for this course are:
AAB
including Maths and a science
- A Levels + a fourth Level 3 qualification
- AAB including Maths and a science + B in a relevant EPQ; AAB including Maths and a science + B in AS or A Level Further Maths
- International Baccalaureate
- 34 with 6, 5 in Higher Level Maths and a science
- BTEC Extended Diploma
- DDM in Engineering + B in A Level Maths
- BTEC Diploma
- DD in Engineering + B in A Level Maths
- T Level
- Distinction in a relevant T Level, including grade A in the core component + B in A Level Maths
- Scottish Highers + 2 Advanced Highers
- AABBB + AB in Maths and a science
- Welsh Baccalaureate + 2 A Levels
- B + AA in Maths and a science
- Access to HE Diploma
- Award of Access to HE Diploma in a relevant subject, with 45 credits at Level 3, including 36 at Distinction (to include Maths and Physics units), and 9 at Merit + Grade B in A Level Maths (or equivalent)
-
Relevant T Level subjects include: Maintenance, Installation & Repair for Engineering & Manufacturing; Building Services Engineering for Construction; or Design & Development for Engineering & Manufacturing
-
Science subjects include Biology, Chemistry, Computer Science, Electronics, Physics or Further Mathematics
You must demonstrate that your English is good enough for you to successfully complete your course. For this course we require: GCSE English Language at grade 4/C; IELTS grade of 6.5 with a minimum of 6.0 in each component; or an alternative acceptable English language qualification
Equivalent English language qualifications
Visa and immigration requirements
Other qualifications | UK and EU/international
If you have any questions about entry requirements, please contact the school/department.
Graduate careers
School of Electrical and Electronic Engineering
Typical graduate job titles include cybersecurity consultant, design engineer, energy engineering consultant, system engineer, electrical engineer, technology analyst, nuclear controls engineer, software engineer and electronics field engineer.
Employers of graduates include ARM, ARUP, BAE Systems, Barclays, Deloitte, Jaguar, Nissan, National Grid, National Instruments, Renault, Rolls Royce, Shell, Siemens, Unilever and Volvo.
School of Electrical and Electronic Engineering
QS World University Rankings 2021
We have been at the forefront of research and teaching within the field of electronic and electrical engineering for over a century. In that time the use of electronics has become mainstream requiring challenges to be overcome to provide solutions for everyday needs.
Our students learn from academic experts who have strong links with partners in industry. Our state-of-the-art laboratories allow you to get hands on with equipment used in industry as preparation for your career.
Our wide range of MEng and BEng undergraduate degree programmes provide you with a robust understanding of the principles of electronic and electrical engineering. We offer a common start to all our degrees which offers you the flexibility to change courses at the end of your first year if you wish to focus on certain areas of interest.
All of first year students take part in the faculty's Global Engineering Challenge, working with students from other engineering disciplines to solve a real-world problem. In your third year, you will work on your own research project supervised by an academic.
All our courses are accredited by the Institution of Engineering and Technology. A four-year MEng meets all the academic standards for Chartered Engineer (CEng) status. If you take our three-year BEng, you'll need to complete some further learning to satisfy the requirements.
University rankings
Number one in the Russell Group
National Student Survey 2024 (based on aggregate responses)
92 per cent of our research is rated as world-leading or internationally excellent
Research Excellence Framework 2021
University of the Year and best for Student Life
Whatuni Student Choice Awards 2024
Number one Students' Union in the UK
Whatuni Student Choice Awards 2024, 2023, 2022, 2020, 2019, 2018, 2017
Number one for Students' Union
StudentCrowd 2024 University Awards
A top 20 university targeted by employers
The Graduate Market in 2023, High Fliers report
A top-100 university: 12th in the UK and 98th in the world
Times Higher Education World University Rankings 2025
Student profiles
Fees and funding
Fees
Additional costs
The annual fee for your course includes a number of items in addition to your tuition. If an item or activity is classed as a compulsory element for your course, it will normally be included in your tuition fee. There are also other costs which you may need to consider.
Funding your study
Depending on your circumstances, you may qualify for a bursary, scholarship or loan to help fund your study and enhance your learning experience.
Use our Student Funding Calculator to work out what you’re eligible for.
Placement and study abroad
Placement
Study abroad
Visit
University open days
We host five open days each year, usually in June, July, September, October and November. You can talk to staff and students, tour the campus and see inside the accommodation.
Subject tasters
If you’re considering your post-16 options, our interactive subject tasters are for you. There are a wide range of subjects to choose from and you can attend sessions online or on campus.
Offer holder days
If you've received an offer to study with us, we'll invite you to one of our offer holder days, which take place between February and April. These open days have a strong department focus and give you the chance to really explore student life here, even if you've visited us before.
Campus tours
Our weekly guided tours show you what 91Ö±²¥ has to offer - both on campus and beyond. You can extend your visit with tours of our city, accommodation or sport facilities.
Apply
Contact us
- Telephone
- +44 114 222 5382
- study@sheffield.ac.uk
The awarding body for this course is the University of 91Ö±²¥.
Recognition of professional qualifications: from 1 January 2021, in order to have any UK professional qualifications recognised for work in an EU country across a number of regulated and other professions you need to apply to the host country for recognition. Read and the .
Any supervisors and research areas listed are indicative and may change before the start of the course.