Biochemistry with an Industrial Placement Year MBiolSci

2025-26 entry
School of Biosciences

Our five-year MBiolSci is designed to give you the best start for a career in industrial or academic research. You'll combine the research-focused integrated masters with a year-long, paid work placement as part of your degree.

Key details

Explore this course:

    Course description

    Why study this course?

    Five-year course

    The ultimate kick-start to your career, resulting in a masters degree, with your fifth year focusing on a major research project.

    Build connections and a career

    Placement organisations include GSK, Thermofisher, and Labcorp or at government research institutes such as the UK Health Security Agency and the Institute of Cancer Research.

    4th in the UK for research quality

    The Research Excellence Framework (REF) 2021 rated 98% of research and impact from the School of Biosciences as world-leading or internationally excellent.

    Make the course your own

    Study the full range of biochemistry or specialise in areas such as biotechnology, molecular genetics, antibiotic resistance or sustainability.

    State-of-the-art facilities

    Multi-million pound microscopy equipment, NMR imaging and facilities for genomics, proteomics and metabolomics research.

    Biochemistry with a Year in Industry

    Investigate biological systems at the molecular level, and the role biochemistry can play in humanity’s future. Gain invaluable research experience in your final year working alongside world-leading academics. Learn to apply that knowledge during a placement year in industry, government or the charity sector.

    Studying biochemistry at the University of 91Ö±²¥ allows you to investigate the structure and function of biological systems at the molecular level. Our masters degree gives you an opportunity to focus on a major research project that builds on the broad and vibrant spectrum of modules you’ve studied in your first three years.

    From your first year you’ll study modules that span the molecular biosciences, with the option to explore additional topics that build on your molecular understanding from across the whole of bioscience. This flexibility allows you to learn how life works in the area that interests you.

    At 91Ö±²¥, you’ll be encouraged to be creative, think independently, and express your ideas. You’ll be in the lab completing practicals across molecular genetics, DNA manipulation and protein structure analysis. You’ll get the chance to use cutting-edge equipment to run your own in-depth research projects in an area such as clinical diagnostics or brewing biotechnology.

    As you progress through your degree, you’ll learn about the various ways that biochemistry can be applied to major challenges affecting humanity today, from how we sustainably feed a global population, to healthy ageing and how new drugs are designed. Your personal tutor will support you to tailor your degree to your interests and career goals.

    Your placement year is a great opportunity to test out a career path and work alongside professionals to acquire skills that will make you a great candidate for future jobs, be that research-focussed or moving towards business or management. You'll pay reduced fees while you're on placement, and we do everything we can with you and our partners to ensure it’s paid. Our students have found placements at GSK and Pfizer, or in areas like  market research, communications or business development.

    Your final year is devoted to a major research project in the lab or in the field. You’ll work alongside our world-leading academics and explore a topic of your choosing in depth.

    This course is accredited by the Royal Society of Biology which shows employers that you've developed the practical skills and scientific knowledge that they're looking for.

    Modules

    We're revising the curriculum of this course for this year of entry and are in the process of confirming the modules. The information on this page gives you an idea of the areas we expect the course to cover. There may be changes before you start. From May of the year of entry, formal programme regulations will be available in our Programme Regulations Finder.

    Title: Biochemistry with an Industrial Placement Year MBiolSci course structure
    UCAS code: C708
    Years: 2024
    First year

    In your first year, you'll spend six hours in the lab each week learning the practical skills and knowledge that every bioscientist needs, including how to establish bacterial cultures, assess bioenergetics and perform gene cloning. Analysis classes will equip you with the skills you'll use outside the lab, from interacting with your data to interpreting your findings. Your lectures will give you a broad understanding of the molecular biosciences, allowing you to explore what you're most interested in.

    Core modules:

    Biochemistry 1

    This module provides a broad introduction to Biochemistry and examines the molecules that carry out and control all the chemical reactions in biological cells. The basic chemical concepts underlying the structures, functions and mechanisms of action of biomolecules.

    20 credits
    Molecular and Cell Biology

    This module considers the fundamental processes at the heart of all life on this planet. Students will learn about the basic molecular processes that enable cells to store and use genetic information to make proteins, as well as the mechanisms that allow cell growth, division, and ultimately cell death. Learning materials will be delivered through a combination of lectures, videos, practical classes and independent study.

    20 credits
    Microbiology 1

    This course is an introduction to the field of microbiology. Students will explore the diversity of microorganisms including Bacteria, Archaea, unicellular Eukaryotes and viruses. They will examine the diversity of the structure and the function of these microorganisms, emphasising the fundamental role that they play in our everyday lives by using examples in medicine and biotechnology.

    20 credits
    Genetics 1

    This course is an introduction to the principles of genetics. Students will explore the genetics of pro- and eukaryotes by studying the mechanisms of gene transmission, genetic exchange, mutations and gene mapping. Additional topics are the genetic basis of diseases, prenatal diagnosis, genetic counselling, gene therapy and genetic basis of antibiotic resistance in bacteria. Students will learn through lectures and videos and independent study.

    10 credits
    Skills in Molecular Bioscience

    The Skills in Molecular Biosciences module introduces students to the fundamentals of scientific practice: lab practical skills, experimental design, information technology, data visualisation and analysis, writing and presentation skills, skills reflection, professionalism and career development.

    30 credits

    Optional modules:

    A student will take 20 credits from this group.

    Zoology

    This course is an introduction to the scientific study of animals. Students will explore the wonders of the animal kingdom through investigations of the physiology, reproduction, development, form and function of a wide diversity of both invertebrates and vertebrates. Students will learn through lectures and videos, practicals and independent study.

    20 credits
    Climate Change and Sustainability

    This course introduces the core scientific issues required to understand climate change and sustainability. Students will learn the causes of climate change, its impacts in natural and agricultural ecosystems, the influence of biogeochemical cycles in these ecosystems on climate, and strategies for sustainably managing ecosystems in future. Learning will be achieved via lectures and videos, practicals and independent study.

    20 credits
    Animal Behaviour

    This unit will provide an introduction to behaviour, focussing on the four fundamental questions: (i) the evolution of behaviour; (ii) the function of behaviour, (iii) the ontogeny of behaviour and (iv) the causation (or mechanisms) of behaviour. The course will introduce the major concepts and information on specific topics, including sexual behaviour, foraging behaviour and social behaviour in humans and non-humans. A central theme will be the extent to which animal behaviour can inform us about human behaviour and in particular the similarities and differences between the evolutionary approach to animal behaviour and evolutionary psychology.

    10 credits
    Introduction to Physiology with Pharmacology

    This module aims to provide students with an introduction to human physiology and pharmacology. It will introduce the fundamental physiological principles that govern the functioning of all cells and tissues within the body. The physiology of normal bodily functions will be explained using a systems-based approach which encourages students' to integrate their understanding of events at a molecular and cellular level with the structure and function of tissues and whole organs. It will examine how these normal bodily functions are affected by disease and drugs, with examples of how model organisms can inform this understanding. It will also provide an opportunity to perform and interpret physiological measurements, giving students hands-on experience of the experimental methods that they will be learning about in lectures.

    20 credits
    Fundamental Maths for Bioscientists

    Proficiency in basic calculations is essential for all scientists. In this module, designed for first-year students in the School of Biosciences who have not studied maths to A-level or equivalent, we will develop the mathematical skills needed to excel as a biologist. Using video tutorials, worksheets, and in-person workshop sessions, students will have the opportunity to build their skills and confidence and develop strategies to tackle complex calculations. Topics covered include arithmetic; concentrations, dilutions and molarity; logarithms; equations and functions; graphical representation of data and descriptive statistics; and probability. 

    10 credits
    Principles of Evolution

    This course is an introduction to the core concepts of evolutionary biology and presents evolution as the central unifying theme of modern biology. Students will examine evolutionary patterns throughout earth history from the geological past to the present, and investigate evolutionary mechanisms of selection, adaptation and the origin of species. Concepts and examples will be introduced in lectures and videos, students will then develop their understanding through practical sessions, quizzes, and independent study.

    10 credits
    Plant Science

    This course is an introduction to the scientific study of plants and associated organisms. Students will explore plant origin, diversity, form, reproduction and development, photosynthesis, nutrient and water acquisition, as well as interactions with symbiotic and pathogenic microbes. Students will learn through lectures and videos, practicals and independent study.

    20 credits
    Evolution

    This course is an introduction to evolution as the central unifying theme of modern biology. Students will examine evolutionary patterns from the geological past to the present, and investigate evolutionary mechanisms of selection, adaptation and the origin of species. They will be introduced to the approaches used to study evolution including classical population and quantitative genetics, phylogenetic trees, and the fossil record. Students will learn through lectures, videos, practical sessions, quizzes, and independent study.

    20 credits
    Ecology and Conservation

    This module is an introduction to the principles of ecology and conservation. It covers ecological concepts about the factors controlling the abundance and distribution of species, coexistence and biodiversity at multiple geographic scales. It combines these concept lectures with key topical lectures about tropical and marine conservation centred on populations, biodiversity and habitats. The module includes lectures, a lab practical, an introduction to computer modelling for conservation biology and a field trip to Potteric Carr, a Yorkshire Wildlife Trust reserve where you'll put theory into practice by collecting data to evaluate some of the ideas you've learned in class.

    20 credits
    Introduction to Neuroscience

    This module aims to provide students with an introduction to neuroscience. It will introduce the fundamental principles of cellular and molecular neuroscience that govern neuronal excitability and neurotransmission. Building on these principles, it will introduce theories relating to how sensory information is processed, and how motor output and aspects of behaviour are controlled by the central nervous system. How the normal functioning of the nervous system is affected by disease and drugs will be examined. It will also provide an opportunity to perform neuroscience experiments and interpret the data. Although focussed on the understanding of human neuroscience, the module will demonstrate how the study of model organisms has contributed to this understanding.

    20 credits
    Introductory Developmental, Stem Cell and Regenerative Biology

    This module aims to provide students with a general introduction to Developmental, Stem Cell and Regenerative Biology. The approach will be concept-based, with an emphasis on the importance of techniques and the interpretation of experimental data. Topics covered include life cycles of the main animal model systems, how cell differences are generated during development, the basic principles of regenerative biology and wound healing as well as stem cell biology. Teaching will take place in a formal lecture environment, supplemented by online tutorials. Assessment will be by formal examination.

    10 credits

    The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption.

    Learning and assessment

    Learning

    Our courses are taught in a wide range of methods. We include traditional lectures and small group tutorials, as well as hands-on learning with practical lab sessions, and research projects that take advantage of our incredible facilities and cutting-edge technology for looking at DNA, proteins, and cells.

    From your first year you’ll study modules that span the molecular biosciences covering biochemistry, genetics, microbiology and molecular biology. Alongside these modules you’ll have the freedom to explore complementary topics across the breadth of bioscience, such as biomedicine, antibiotic resistance and immune systems, plant science, even to evolution and conservation.

    We encourage our students to be fully engaged throughout their courses, so you'll have lots of opportunities to be creative, think independently, and express your ideas. You’ll spend a lot of time in the lab, completing in-depth practicals across molecular genetics, DNA manipulation and protein structure analysis, and you’ll get the chance to use cutting-edge equipment throughout your degree.

    We invest to create the right environment for you. That means outstanding facilities, study spaces and support, including 24/7 access to our online library service.

    Study spaces and computers are available to offer you choice and flexibility for your study. Our five library sites give you access to over 1.3 million books and periodicals. You can access your library account and our rich digital collections from anywhere on or off campus. Other library services include study skills training to improve your grades, and tailored advice from experts in your subject.

    Learning support facilities and library opening hours

    Assessment

    Throughout the course you will be assessed through a variety of methods, including exams, tests, presentations, coursework and practical work.

    Programme specification

    This tells you the aims and learning outcomes of this course and how these will be achieved and assessed.

    Entry requirements

    With Access 91Ö±²¥, you could qualify for additional consideration or an alternative offer - find out if you're eligible.

    Standard offer

    The A Level entry requirements for this course are:
    AAA
    including Chemistry and a second science

    A Levels + a fourth Level 3 qualification
    AAB including Chemistry and a second science + B in an EPQ in the field of Biology, Chemistry, Physics, Maths or Psychology
    International Baccalaureate
    36 with 6 in Higher Level Chemistry and a second science
    BTEC Extended Diploma
    (RQF) D*DD in Applied Science (Basic*, Biomedical Science*, or Analytical & Forensic Science** streams only)
    BTEC Diploma
    DD in Applied Science + A in A Level Chemistry
    T Level
    Not accepted
    Scottish Highers + 2 Advanced Highers
    AAABB + AA in Chemistry and a second science
    Welsh Baccalaureate + 2 A Levels
    A + AA in Chemistry and a second science
    Access to HE Diploma
    Award of Access to HE Diploma in Science, with 45 credits at Level 3, including 39 at Distinction (to include Chemistry and Biology units), and 6 at Merit
    Other requirements
    • Second science subjects include Biology/Human Biology, Maths, Further Maths, Physics, Psychology or Geography

    • GCSE Maths grade 4/C

    • *Applied Science / Applied Science (Biomedical Science) must include the units: Practical Chemical Analysis, Applications of Organic Chemistry, and Applications of Inorganic Chemistry
      **Applied Science (Analytical & Forensic Science) must include the units: Practical Chemical Analysis, Applications of Organic Chemistry, and Applications of Inorganic Chemistry; and at least one of the following units: Physiology of Human Body Systems, Human Regulation & Reproduction, Biological Molecules & Metabolic Pathways, Diseases & Infections, Microbiology & Microbiological Techniques, Biomedical Science, or Medical Physics Applications

    Access 91Ö±²¥ offer

    The A Level entry requirements for this course are:
    AAB
    including Chemistry and a second science

    A Levels + a fourth Level 3 qualification
    AAB including Chemistry and a second science + B in an EPQ in the field of Biology, Chemistry, Physics, Maths or Psychology
    International Baccalaureate
    34 with 6,5 (in any order) in Higher Level Chemistry and a second science
    BTEC Extended Diploma
    (RQF) DDD in Applied Science (Basic*, Biomedical Science*, or Analytical & Forensic Science** streams only)
    BTEC Diploma
    DD in Applied Science + B in A Level Chemistry
    T Level
    Not accepted
    Scottish Highers + 2 Advanced Highers
    AABBB + AB in Chemistry and a second science
    Welsh Baccalaureate + 2 A Levels
    B + AA in Chemistry and a second science
    Access to HE Diploma
    Award of Access to HE Diploma in Science, with 45 credits at Level 3, including 36 at Distinction (to include Chemistry and Biology units) and 9 at Merit
    Other requirements
    • Second science subjects include Biology/Human Biology, Maths, Further Maths, Physics, Psychology or Geography

    • GCSE Maths grade 4/C

    • *Applied Science / Applied Science (Biomedical Science) must include the units: Practical Chemical Analysis, Applications of Organic Chemistry, and Applications of Inorganic Chemistry
      **Applied Science (Analytical & Forensic Science) must include the units: Practical Chemical Analysis, Applications of Organic Chemistry, and Applications of Inorganic Chemistry; and at least one of the following units: Physiology of Human Body Systems, Human Regulation & Reproduction, Biological Molecules & Metabolic Pathways, Diseases & Infections, Microbiology & Microbiological Techniques, Biomedical Science, or Medical Physics Applications

    English language requirements

    You must demonstrate that your English is good enough for you to successfully complete your course. For this course we require: GCSE English Language at grade 4/C; IELTS grade of 6.5 with a minimum of 6.0 in each component; or an alternative acceptable English language qualification

    Pathway programme for international students

    If you're an international student who does not meet the entry requirements for this course, you have the opportunity to apply for an at the . This course is designed to develop your English language and academic skills. Upon successful completion, you can progress to degree level study at the University of 91Ö±²¥.

    If you have any questions about entry requirements, please contact the school/department.

    Graduate careers

    School of Biosciences

    As a Biosciences graduate, you’ll have a huge range of career opportunities open to you. Whether you want to work in industry, join a Top 100 graduate employer, or continue your studies, employers seek out our graduates because of the skills they develop during their time at 91Ö±²¥.

    Whatever you’re passionate about, we’ll make sure you get the scientific skills and knowledge to pursue it. Here are just a few of the exciting things our graduates are doing now:

    • Saving local biodiversity and developing solutions to global food shortages at the RSPB and local Wildlife Trusts
    • Working in industrial research at organisations including Pfizer, AstraZeneca and Reckitt
    • Working in healthcare, in the NHS or for private healthcare providers or charities
    • Studying for a PhD

    A biosciences degree from the University of 91Ö±²¥ can even take you into roles in marketing, teaching, human resources, IT, science communication and beyond. Each year our graduates apply their transferable skills and begin careers in these areas with Top 100 employers like GSK, Google and Aldi.

    School of Biosciences

    Top five in the UK for quality of research

    Research Excellence Framework 2021

    98% of our research and impact is rated as world-leading or internationally excellent

    Research Excellence Framework 2021

    BSc Biochemistry and Microbiology

    The School of Biosciences brings together more than 100 years of teaching and research expertise across the breadth of biology. It is home to over 120 lecturers who are actively involved in research at the cutting edge of their field, sharing their knowledge with more than 1,500 undergraduate and 300 postgraduate students. 

    Our expertise spans the breadth and depth of bioscience, including molecular and cell biology, genetics, development, human physiology and pharmacology through to evolution, ecology, biodiversity conservation and sustainability. This makes us one of the broadest and largest groupings of the discipline and allows us to train the next generation of biologists in the latest research techniques and discoveries.

    The School of Biosciences is based at the heart of campus across the interlinked Firth Court, Alfred Denny, Florey, Perak and Addison buildings which house lecture theatres, teaching labs and research facilities. You’ll be over the road from 24/7 library facilities and the UK’s number one students’ union, a short walk from our student accommodation, sports facilities and the city centre, and just a bus ride away from the Peak District National Park.

    Facilities

    Our students have access to world-class laboratory and computing resources for biological research and are trained in specialist teaching laboratories. The school is home to state-of-the-art facilities, including the Medical Teaching Unit where our students work alongside trainee medics to gain an excellent foundation for understanding human physiology and developmental biology. We also have the Alfred Denny Museum of Zoology that we use for teaching animal anatomy, biodiversity and evolution. 

    To further support our research and teaching, we have a world-leading controlled environment facility which allows our staff and students to study the impacts of climate change; multi-million pound microscopy equipment that’s helping us to understand and prevent diseases such as MRSA; and facilities for , Biological Mass Spectrometry, and Nuclear Magnetic Resonance imaging.

    School of Biosciences

    University rankings

      Number one in the Russell Group
    National Student Survey 2024 (based on aggregate responses)

      92 per cent of our research is rated as world-leading or internationally excellent
    Research Excellence Framework 2021

      University of the Year and best for Student Life
    Whatuni Student Choice Awards 2024

      Number one Students' Union in the UK
    Whatuni Student Choice Awards 2024, 2023, 2022, 2020, 2019, 2018, 2017

      Number one for Students' Union
    StudentCrowd 2024 University Awards

      A top 20 university targeted by employers
    The Graduate Market in 2023, High Fliers report

      A top-100 university: 12th in the UK and 98th in the world
    Times Higher Education World University Rankings 2025

    Student profiles

    Biochemistry student Lucy discusses her placement year at GSK
    Lucinda Wellman-Smith

    I've achieved so much more than I expected to during my placement

    Lucinda Wellman-Smith BSc Biochemistry with a Year in Industry

    Lucinda is spending her placement year working for consumer goods company, Reckitt within Global Regulatory Affairs. Lucinda has loved how many opportunities there have been within her role and has been surprised by how much she's been able to achieve in such a short space of time.

    Fees and funding

    Fees

    Additional costs

    The annual fee for your course includes a number of items in addition to your tuition. If an item or activity is classed as a compulsory element for your course, it will normally be included in your tuition fee. There are also other costs which you may need to consider.

    Examples of what’s included and excluded

    Funding your study

    Depending on your circumstances, you may qualify for a bursary, scholarship or loan to help fund your study and enhance your learning experience.

    Use our Student Funding Calculator to work out what you’re eligible for.

    Work experience

    Each year undergraduate students can apply to join the 91Ö±²¥ Undergraduate Research Experience (SURE) scheme. This gives you the chance to spend around six weeks working in one of our research groups over the summer. It's a unique opportunity to pursue research in an area that you’re excited about and can help inform your future career aspirations.

    Visit

    University open days

    We host five open days each year, usually in June, July, September, October and November. You can talk to staff and students, tour the campus and see inside the accommodation.

    Open days: book your place

    Subject tasters

    If you’re considering your post-16 options, our interactive subject tasters are for you. There are a wide range of subjects to choose from and you can attend sessions online or on campus.

    Upcoming taster sessions

    Offer holder days

    If you've received an offer to study with us, we'll invite you to one of our offer holder days, which take place between February and April. These open days have a strong department focus and give you the chance to really explore student life here, even if you've visited us before.

    Campus tours

    Our weekly guided tours show you what 91Ö±²¥ has to offer - both on campus and beyond. You can extend your visit with tours of our city, accommodation or sport facilities.

    Campus tour: book your place

    Apply

    Make sure you've done everything you need to do before you apply.

    How to apply When you're ready to apply, see the UCAS website:

    Not ready to apply yet? You can also register your interest in this course.

    The awarding body for this course is the University of 91Ö±²¥.

    Recognition of professional qualifications: from 1 January 2021, in order to have any UK professional qualifications recognised for work in an EU country across a number of regulated and other professions you need to apply to the host country for recognition. Read and the .

    Any supervisors and research areas listed are indicative and may change before the start of the course.

    Our student protection plan

    Terms and Conditions upon Acceptance of an Offer

    2025-2026

    Make sure you've done everything you need to do before you apply.

    How to apply When you're ready to apply, see the UCAS website:

    Not ready to apply yet? You can also register your interest in this course.

    Our five-year MBiolSci is designed to give you the best start for a career in industrial or academic research. You'll combine the research-focused integrated masters with a year-long, paid work placement as part of your degree.

    No No